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This study develops and applies a chaos synchronization-based detection method for an engineering
application of monitoring power quality disturbance. The new method can detect minor dynamic
changes in signals. Likewise, prominent characteristics of system signal disturbance can be extracted
by this technique. The method is then combined with the extension recognition algorithm to accurately
apply to signal clustering of power disturbance. According to extensive computer simulation results and a
comparison among three typical chaotic systems, it is confirmed that the proposed method is well appli-
cable using various chaotic systems, mostly with very high accuracies. As compared with other tradi-
tional methods, the new method is shown to have higher accuracy, faster computing speed and better
expandability. It is foreseen that if the method can be implemented by system-on-chip in the near future,
it will find many real engineering applications such as hand-held power quality analyzers and auxiliary
means for on-line real-time detection, among others.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

From the definition of IEEE Standard Dictionary of Electrical and
Electronics Terms, power quality refers to ‘‘the concept of power-
ing and grounding sensitive electronic equipment in a manner
suitable for the equipment.’’ It is widely defined as ‘‘the degree of
satisfaction of users with the power supply quality of power
companies.’’

In recent years, as a variety of precision equipment are used in
the applications of electronic equipment and distributed power
sources in the high-tech industry, the requirement for power qual-
ity has become increasingly desirable [1]. Noticeably, the causes
for power quality events include natural disasters, human factors,
external object contact, equipment deterioration, and circuit spec-
ifications [2]. In a power system, due to nonlinear loads (e.g., com-
mutation equipment and welders), the electric energy converters
in the equipment create a large amount of non-fundamental fre-
quency current flows into the power system, causing current har-
monics [3]. The above factors can cause voltage sags, swells, and
interruptions or harmonics of power systems. Therefore, the state
of a power system should be online measured by a monitoring
instrument, thereby improving the power supply quality.

A power engineer needs to recognize and classify the detected
power system signals when monitoring and analyzing the power
quality problem, so as to attain the goal for accurate diagnosis
and analysis [4]. An existing problem is, as has been commonly
observed, that most if not all present instruments for monitoring
power systems identify the states of the power system signals
according to long-term voltage measurements, such as the root-
mean-square (RMS) value of voltage in unit time as well as the var-
iance of the value in unit time, or to detect whether there is voltage
sag or power harmonics according to the changes in voltage peaks
and frequencies.

In order to analyze various power quality problems accurately,
multiple electric power characteristics should be measured, but
then the analysis becomes very time consuming [5,6]. Previous
studies [7] use the Fourier Transform to analyze the frequency con-
tents as the basis of classifying frequencies. The current needs to
remain for a period of time, and then the conversion takes an even
longer time. Since the information of time disappears after the Fou-
rier Transform is taken, the aforementioned studies suggest to use
the Short-Time Fourier Transform. Although the relevance
between time and frequency domains can be expressed after
Short-Time Fourier Transform [8], the window of Short-Time Fou-
rier Transform has a fixed width. In other words, when the time
domain requires higher resolution, the resolution of the frequency
will be reduced. Therefore, it is not an ideal method for analyzing
instantaneous electric power signals, and moreover it cannot
detect the electric power signals with significant noise. As a result,
Fourier Transform has relatively lower detection accuracy. In order
to overcome this defect, several studies use the Wavelet Transform
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[9] to analyze power system signals, which suggest approximate
the window width between frequency domain and time domain
to provide higher time-domain resolution for the high frequency
part of a signal, and to provide higher frequency-domain resolution
for its lower frequency part. Therefore, in the transient period of a
power system, Wavelet Transform has improved the defect of Fou-
rier Transform, so that more prominent characteristics may be
extracted by Wavelet Transform as the input characteristics used
by many artificial intelligence algorithms such as Neural Network
Algorithm (NNA) [10], Fuzzy Theoretic (FT) scheme [11], and
Genetic Algorithm (GA) [12]. However, the number of characteris-
tics extracted by Wavelet Transform is obviously larger, and like-
wise the noise interference in the power system cannot be
recognized clearly, thus the power quality monitor accuracy is
reduced.

Some other studies use classification schemes, such as K-means
clustering algorithm [13], C-means clustering algorithm [14], and
Support Vector Machine (SVM) [15]. The K-means and C-means
clustering algorithms are both mean-square-error clustering
schemes, and their cluster numbers are determined randomly. If
the cluster numbers are selected correctly, they can yield very good
recognition results. On the contrary, if the cluster numbers are
allocated incorrectly, the recognition rates will decrease signifi-
cantly. Since this method adopts random allocation, there may be
electric power signal classification errors, so that the recognition
accuracy may be affected. The SVM is a new sorting algorithm
based on statistics. It divides the input signals into two different
sets by a hyperplane in space. The combination of multi-SVM is
obtained in multi-signal states, but the optimal classification must
be calculated. Therefore, some optimization algorithms are used,
such as particle swarm optimization [16], GA [17], and annealing
algorithm [18], to determine appropriate parameter values, which
improve the classification to yield better results.

On the other hand, chaos theory has been applied in different
fields in recent years, in particular with chaos detection [19]. A
subtle change in an electric power signal can be detected based
on chaos theory, where power system signals are used to validate
the accuracy of chaos-based methods. Recent studies have reme-
died some defects in chaos-based methods, as reported in [20].

Moreover, chaos synchronization has been used to detect power
quality changes, where electric power signals are classified by, for
example, the Particle Swarm Optimization Probabilistic Neural
Network (PSO-PNN), which was used for detection through chaos
synchronization [21]. The signal response to each type of power
qualities is observed from the underlying chaos waveform. How-
ever, in this method, complex classification needs to be carried
out before detection, so the detection needs a longer time. More-
over, power systems with noise have not been discussed in the lit-
erature before. From the same approach, this study simplifies the
method in [20] for detection, which can now significantly shorten
the detection time and also well handle electric power signals with
noise.

More precisely, this study remedies the defects found in various
methods proposed in previous investigations, by using chaos syn-
chronization-based technique to extract fewer characteristics from
power system signals in a shorter time. Noise interference in the
power system can be easily identified by using chaotic characteris-
tics. The dynamic trajectories in the chaos synchronization are
extracted from the power system by using this method. The error
trajectories are then used to avoid using the general power system
characteristics such as voltage, current, and power, which are more
costly to obtain and to use.

This study implements power system detection mechanism,
hoping to reduce both the characteristic number of extracted
waveform and the computing time. The extension recognition
method will be used to analyze the state of the power system
disturbance, so as to maintain the accuracy of identification and
shorten the detection time.

The proposed method is then verified and validated by
extensive numerical simulations on a power system setting, using
some typical chaotic systems as examples, demonstrating its
effectiveness for potential engineering applications.
Architecture of power quality monitoring and analysis

Power disturbance in general may be classified as voltage dis-
turbance and current disturbance, which provide voltage and cur-
rent deviations from the ideal sine waves, which have potential
impacts on power grids or electrical equipment. It is usually
resulted from human factors, natural disasters and power system
characteristics. Common electric power signals are listed in Table
1 [22–25].

All of the present measuring instruments identify whether
there is voltage sag, swell or power interruption, through long-
term voltage monitoring, calculating the voltage RMS value in unit
time, and observing the variation of the value in unit time. They
may also identify whether there is voltage flicker or power har-
monics according to the changes in voltage peaks and frequencies.
In order to analyze various power quality problems accurately,
multiple electric power characteristics should be measured. It
has been observed that there may be misrecognition when the
electric power system is subject to noise interference.

Given the above background, this study is motivated to try
utilizing the dynamic trajectories of a chaotic system to convert
the power quality disturbance waveform, so as to extract fewer
characteristics in shorter time, and to increase the accuracy of
detection based on the sensitive characteristics of chaos.

Specifically, this study designs a chaotic synchronization detec-
tor to convert the input signal waveform, and extract prominent
characteristics from the waveform. The extension theory in pattern
recognition will then be used to identify the type of the power dis-
turbance signals. The overall scheme is shown in Fig. 1.
The proposed detection method

The proposed chaos synchronization-based method uses the
sensitive characteristic of chaotic dynamic trajectories to identify
the disturbance waveform of a power system accurately and rap-
idly, such as normal voltages, voltage swells, voltage sags, voltage
interruptions and voltage harmonics. It is well known that if there
is noise in the disturbance waveform, most traditional methods
generally cannot recognize the correct characteristics accurately.
One contribution is that the chaos synchronization-based tech-
nique can overcome this main defect of most traditional methods,
and can also increase the accuracy level of power quality analysis
significantly.

Chaos synchronization detection method

The modern chaos theory was initiated by meteorologist
Edward N. Lorenz in 1963 [26]. For any subtle change in initial con-
dition of a chaotic system, the system state changes significantly
after a long period of time. In addition, when two chaotic systems
with slightly different parameters have the same initial conditions,
there will also be significant differences between the two states
after a long period of time. Therefore, the notion of chaos synchro-
nization was proposed in 1990 [27] to carefully study how to syn-
chronize two chaotic system trajectories. Fig. 2 is a schematic
diagram of two chaotic states achieving synchronization.

In a general setting, the two chaotic systems are called Master
System and Slave System, respectively. When the master and slave



Table 1
Common electric power signals.

Category Duration Voltage magnitude and spectral content

Sag Instantaneous 0.5–30 cycle 0.1–0.9 pu
Momentary 30 cycles – 3 s. 0.1–0.9 pu
Temporary 3 s. – 1 min 0.1–0.9 pu

Swell Instantaneous 0.5–30 cycle 1.1–1.8 pu
Momentary 30 cycles – 3 s. 1.1–1.4 pu
Temporary 3 s. – 1 min 1.1–1.2 pu

Interruption Momentary 0.5 cycles – 3 s. <0.1 pu
Temporary 3 s. – 1 min <0.1 pu

Harmonics Steady state 0–20% (0–100th harmonic)
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Fig. 1. The proposed power quality detection system.
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Fig. 2. Schematic diagram of two chaotic states achieving synchronization.
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systems have different initial values, the dynamic trajectories of
the two are very different in a long run. In [27], a controller was
applied to the back end of the slave system, deriving it to track
the state of the master system so as to achieve synchronization,
as described by Eq. (1):

lim
t!1
kXSlave;iðtÞ � XMaster;iðtÞk ! 0; i ¼ 1;2; . . . ;n ð1Þ

This approach was used to detect power system signals lately.
The master and slave chaotic systems are expressed by Eqs. (2)
and (3), respectively:

Master:

_x1 ¼ F1ðx1; x2; x3; . . . ; xnÞ

_x2 ¼ F2ðx1; x2; x3; . . . ; xnÞ

..

.

_xn ¼ Fnðx1; x2; x3; . . . ; xnÞ

8>>>>>>><
>>>>>>>:

ð2Þ

Slave:
_y1 ¼ F1ðy1; y2; y3; . . . ; ynÞ þ u1

_y2 ¼ F2ðy1; y2; y3; . . . ; ynÞ þ u2

..

.

yn ¼ Fnðy1; y2; y3; . . . ; ynÞ þ u3

8>>>>>>><
>>>>>>>:

ð3Þ

where Fi (i = 1,2,. . .,n) is a nonlinear function, Eqs. (4), (5) form an
error state as Eq. (8) and a dynamic error as Eq. (6):

e1 ¼ y1 � x1; e2 ¼ y2 � x2; . . . ; en ¼ yn � xn ð4Þ

_e1 ¼ F1ðx1; x2; x3; . . . ; xnÞ � F1ðy1; y2; y3; . . . ; ynÞ þ u1

¼ G1ðe1; e2; . . . ; enÞ þ u1ðe1; e2; . . . ; enÞ
_e2 ¼ F2ðx1; x2; x3; . . . ; xnÞ � F2ðy1; y2; y3; . . . ; ynÞ þ u2

¼ G2ðe1; e2; . . . ; enÞ þ u2ðe1; e2; . . . ; enÞ
..
.

_en ¼ Fnðx1; x2; x3; . . . ; xnÞ � Fnðy1; y2; y3; . . . ; ynÞ þ un

¼ Gnðe1; e2; . . . ; enÞ þ unðe1; e2; . . . ; enÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5Þ

where Gi(i = 1, 2, ..., n) is a nonlinear function, and the dynamic error
equation is also a chaotic system. In order to improve the diagnostic
rate and reduce the false possibilities by the extension theory for
fault diagnosis, the chaotic synchronization error dynamics were
used to pre-process the signal that is to be diagnosed.

Here, a chaotic dynamic trajectory is used to study various sys-
tem operating states, such as periodic, aperiodic and random
states, in the time domain, thereby identifying the power quality
disturbance state. The multiple dynamic errors are expressed as
in Eq. (6):

_e1½j� ¼ _y1½j� � _x1½j�
_e2½j� ¼ _y2½jþ 1� � _x2½jþ 1�
..
. ..

. ..
.

_en½j� ¼ _yn½jþ n� 1� � _xn½jþ n� 1�

8>>>><
>>>>:

; j ¼ 1;2;3; . . . ; j� n ð6Þ
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where xi (i = 1,2,3) is a normal signal of the power system and yi

(i = 1,2,3) is the actual system signal to be measured, which is
injected into the chaotic dynamic error Eq. (4) to obtain an output
waveform. Prominent characteristics are then extracted from the
output waveform, and the state of the power system signal is finally
identified by using the extension theory (to be detailed below).

As a test framework, this study uses two Lorenz chaotic systems
[28][29], one as the master system and the other as the slave sys-
tem, expressed as in Eqs. (7), (8). The dynamic error state equation
is worked out and expressed in the matrix form as shown in Eq. (9).

Master :

_x1 ¼ aðx2 � x1Þ
_x2 ¼ bx1 � x1x3 � x2

_x3 ¼ x1x2 � cx3

8><
>: ð7Þ
Slave :

_y1 ¼ aðy2 � y1Þ þ u1

_y2 ¼ by1 � y1y3 � y2 þ u2

_y3 ¼ y1y2 � cy3 þ u3

8><
>: ð8Þ
_e1

_e2

_e3

2
64

3
75 ¼

�a a 0
b �1 0
0 0 �c

2
64

3
75

e1

e2

e3

2
64

3
75þ

0
�y1y3 þ x1x3

y1y2 � x1x2

2
64

3
75þ

u1

u2

u3

2
64

3
75 ð9Þ

where a, b and c are positive constants. The eigenvalues are
obtained from Eq. (9), as Eq. (10):

k1 ¼ � aþ1
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þ2 � 4að1� bÞ

q

k2 ¼ � aþ1
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þ2 � 4að1� bÞ

q
k3 ¼ �c

ð10Þ

If the real parts of the eigenvalues are negative, the state of sys-
tem (9) is stable [30], so the e2 upper half waveform can be
extracted from the output waveform, which can be divided into
3 characteristics according to the e1 value, expressed as Eq. (11):

ck ¼
1
n

Xn

i¼1

e2k;i; k ¼ 1;2;3 ð11Þ

where c1, c2 and c3 are the characteristics used in this study, e21,i,
e22,i, e23,i (i = 1,2,...,n) represent the chaotic dynamic error values
in three different error intervals, respectively, when e2 > 0.

According to various state waveforms of the power quality sig-
nals including normal, voltage swell, voltage sag, interruption and
harmonics signals, the matter-element model in the extension the-
ory is built to identify the output signals of the power system. This
study uses the average value calculated by Eq. (11) as the charac-
teristic values for such identification.
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Fig. 3. Schematic diagram of a fuzzy set and its extension set.
Outline of the extension theory

In signal processing, artificial intelligence algorithms are often
used for signal analysis and classification. Extension theory not
only can be applied to signal fault diagnosis but also can achieve
better effectiveness than neural networks. It is very convenient
to use without the need of learning from samples. It only needs
to set the classical domain and the joint field. The extension theory
provides a law and a method to study the extensibility of an object,
and uses quantification and qualification analyses to solve contra-
dictory problems from these two perspectives [31,32]. The two
major pillars of the extension theory are matter-element theory
and extension set. These two concepts are used to quantify objects
and to implement planning based on the correlativity, aiming to
describe the information about the object.
According to this theory, the range of a fuzzy set is extended
from [0, 1] to (�1,1). The schematic diagram of a fuzzy set and
its extension set is shown in Fig. 3 [31].

The matter-element theory and extension set are briefly
described below.

Matter-element theory
The aim of matter-element theory is to study the matter-ele-

ment extensibility and matter-element transformation as well as
the properties of the matter-element transformation. For a variety
of objects or phenomena, to specify the differences among them,
the so-called characteristic mode is used for distinction. If the
form, attitude and pattern forming objects are different, and if
the differences are expressed as mathematical magnitudes in the
form of the matrix Eq. (12) [32]

R ¼ ðN; c;uÞ ð12Þ

where N represents the matter; c is the characteristic of the matter-
element, and u is N’s measure of the characteristics c, in which u can
be a value or an interval. Here, R = (N, C, U) is a multi- dimensional
matter-element, C = [c1c2. . .cn]T is a characteristic vector, and
U = [u1u2. . .un]T is the corresponding magnitude vector.

If the characteristic magnitude is a range, then this range is
called a classical domain, contained in the joint field, with intervals
F0 = ha, bi, F = hc, di, and F0 2 F, where a and b are the upper and
lower limits of the classical domain, respectively, c and d are the
upper and lower limits of the joint field, respectively.

Extension set
The core of the extension theory includes the extension set and

the extension correlation function, which extends the fuzzy set
from [0, 1] to (�1,1), and expresses the correlation function as
the particularity of the object. The extension set extends the range
of a set to all real numbers, (�1,1), representing the degree of a
characteristic. Then, the extension set is defined as follows [33]:

If X is the domain, and for any element x in X, x 2X, there is a
corresponding real number, K(x) 2 (�1,1), then the extension set
is defined as

P ¼ fðx; yÞj x 2 X; y ¼ KðxÞ 2 ð�1;1Þg ð13Þ

where y = K(x) is the correlation function of the extension set X,
and K(x) is the correlation grade of x on the extension set denoted
by A, with range (�1,1). The extension set P in domain X is
expressed as

P ¼ Pþ [P0 [P� ð14Þ

where

Pþ ¼ fðx; yÞj x 2 X ; y ¼ KðxÞ > 0g ð15Þ

P0 ¼ fðx; yÞj x 2 X ; y ¼ KðxÞ ¼ 0g ð16Þ

P� ¼ fðx; yÞj x 2 X; y ¼ KðxÞ < 0g ð17Þ
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where P0, P+ and P� are the zero boundary, positive field and neg-
ative field in the extension set, respectively. The extended member-
ship function is shown in Fig. 4.
Simulation results and discussion

This study establishes data as per IEEE Std 1159–1995, and uses
Matlab to simulate the power quality problems, including power
interruption, voltage sag, voltage swell and power harmonics, as
illustrated by Fig. 5. More details about the common electric power
signals with IEEE Std 1159–1995 have been added into Table 1.
Fig. 5. Various power d

Fig. 6. White Gaussian
Fig. 6 shows the simulated white Gaussian noise waveform of a
power system input signal with external noise interference. The
power system disturbing signal with noise waveform is shown in
Fig. 7.

At present, general power quality measuring instruments can
capture the effective values of the voltage, but only the problems
resulted from voltage amplitude variation can be identified. The
harmonics, frequency variation and external noise interference
cannot be detected specifically. Therefore, this study uses chaotic
characteristics, as discussed above, so that when a power system
signal has any subtle change or noise effect, prominent character-
istic differences can be observed in the chaotic waveform.

Specifically, this study uses the dynamic error equation of the
Lorenz chaotic system as an example. The chaotic waveform con-
version was carried out for both the normal electric power wave-
form and the disturbed electric power waveform. A trajectory of
the chaotic motion was extracted as the input for the extension-
based dynamic identification method. The waveforms after chaotic
trajectory conversion are shown in Figs. 8–11. The corresponding
chaotic waveforms with 5% noise are shown in Figs. 12–15.

Figs. 8–11 show that the chaotic waveforms are around the cen-
ter point (0,0). It is known that the chaotic trajectory attracts this
signal towards the center point (0,0), so it will not deviate from
it, which also generates a chaos-like signal. According to the com-
parison between the chaotic waveform of the normal signal in
isturbance signals.

noise waveform.



Fig. 7. Various power disturbance signals with noise.

Fig. 10. Chaos scatter under voltage swell of the power system.
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Fig. 8 and the sag waveform in Fig. 9, the attractors in Fig. 9 are clo-
ser to the center point (0,0) than that in Fig. 8. This indicates that
the attraction of the center point is stronger in the former case.
In comparison to Figs. 10 and 11, where the attractors are farther
from the center point, indicating that the attraction of the center
point is weaker there.

On the other hand, according to the chaotic waveforms with
noise in Figs. 12–15, besides the strengths of the chaotic attractors,
they are also denser. On the contrary, the chaotic waveforms with-
out noise are relatively more uniform. For this reason, the present
study uses the characteristics of the chaotic attractors to detect
possible external noise interference to the chaotic motion trajecto-
ries. The characteristics of various electric power signals are then
extracted from the chaotic motion trajectories, and the extension
theory is then used to identify to which electric power signal state
the waveform of the power system output signal belongs. It helps
Fig. 8. Chaotic scattering under normal voltage of the power system.

Fig. 9. Chaos scatter under voltage sag of the power system.

Fig. 11. Chaos scatter under voltage harmonics of the power system.

Fig. 12. Chaos scatter of normal voltage with 5% noise.



Fig. 13. Chaos scatter of voltage sag with 5% noise.

Fig. 14. Chaos scatter of voltage swell with 5% noise.

Fig. 15. Chaos scatter of voltage harmonics with 5 noises Table 1.

Table 2
Extension matter-element model for voltage signals in various states.

Normal c1 h12;13i
c2 h24;25i
c3 h13;14i

2
64

3
75

Sag c1 h1;11i
c2 h1;23:5i
c3 h1;12:5i

2
64

3
75

Swell c1 h14;30i
c2 h24:5;40i
c3 h15;30i

2
64

3
75

Int: c1 h0;0:99i
c2 h0;0:99i
c3 h0;0:99i

2
64

3
75

Har: c1 h10;14i
c2 h10;17i
c3 h12;15i

2
64

3
75

Joint Field c1 h0;45i
c2 h0;45i
c3 h0;45i

2
64

3
75

Table 3
Comparison of detection accuracies of the three simulated chaotic systems.

Signal Chaotic system

Lorenz New Lorenz Sprott

Normal With noise 97% 95% 95%
Without noise 98% 96% 95%

Sag With noise 95% 97% 96%
Without noise 96% 96% 97%

Swell With noise 96% 96% 96%
Without noise 97% 97% 96%

Interruption With noise 98% 98% 96%
Without noise 97% 98% 96%

Harmonics With noise 96% 95% 95%
Without noise 97% 96% 95%

Total average With noise 96.4% 96.2% 95.6%
Without noise 97% 96.6 95.8%
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the power engineers to detect and improve the power quality in
interest.

According to the comparison among various chaotic trajectory
waveforms shown above, one can observe that the chaotic charac-
teristics make the waveforms to circle around the origin, and to
make both the horizontal and vertical waveforms gradually
become symmetrical. Based on this observation, the present study
only selects the equalization point values of the upper half wave e2

of e1 within intervals [�1.5,�0.5], [�0.5,0.5] and [0.5,1.5], as the
extracted characteristic values. Table 2 shows the matter-element
model of the signal type.

Finally, a matter-element module is built, and the weights of
various characteristics are set as 1/3. The signal is injected and
the disturbed state of the electric power signal is detected
accurately through the proposed extension-based recognition pro-
cess. The results are further discussed below.

According to the matter-element module in Table 2 and the
identification results, this study detected 100 groups of signals
with noise, and then disregarded noise to inspect the pure power
quality. Besides the Lorenz system, this method was also tested
using two other different chaotic systems, a new Lorenz system
[34] and a Sprott system [35], for comparison, as shown in Eqs.
(18), (19). The purpose here is to verify that the proposed method
is not only limited to a special kind of chaotic systems. The identi-
fication accuracies using different chaotic systems are summarized
and compared in Table 3.
New Lorenz system :

_x1 ¼ ax1 � bx2x3

_x2 ¼ �cx2 þ ex3 þ x1x3

_x3 ¼ �fx3 þ x1x2

8><
>: ð18Þ
Sportt system

_x1 ¼ x2

_x2 ¼ x3

_x3 ¼ �ax1 � x2 � bx3 þ 2signðx1Þ

8><
>: ð19Þ

The parameters a, b, c, e, f, a and b in Eqs. (18), (19) are positive
constants, and the values were determined by calculating the asso-
ciated eigenvalues of the corresponding chaos equations [31]. The
sign (.) in Eq. (19) is defined as in Eq. (20).
signðx1Þ ¼
1; x1 > 0
�1; x1 < 0

�
ð20Þ

The error states of all chaotic systems are calculated by using
the proposed method. The same characteristic is extracted and
the voltage signals of different power systems are classified by



Table 4
Comparison of traditional methods against the method proposed in this paper.

Test method Diagnosis rate (%)

K-means clustering (Wavelet transform) 59.2
Fuzzy C-means clustering (Wavelet transform) 61.2
Extension theory (Wavelet transform) 85.4
Extension genetic algorithm (Wavelet transform) 91.7
Extension theory (Lorenz chaotic system) 97
Extension theory (Liu chaotic system) 97.4
Extension theory (new lorenz chaotic system) 96.6
Extension theory (Sportt chaotic system) 95.8
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using the extension theory, as discussed above. The accuracies
(successful percentages) of the proposed detection method are
summarized in Table 3 for comparison.

According to Table 3, the accuracies are all higher than 95% for
the three chaotic systems used, especially for the Lorenz system.
This demonstrates that the method proposed in this paper is
indeed very effective, therefore can be applied to various signal
detections.

The proposed method is now compared to the traditional meth-
ods in Table 4. As can be seen, the new method is better than all
other methods in terms of accuracy, not to mention that it is also
faster.
Conclusions

This study has developed a signal detection method based on
chaos synchronization, which can effectively extract prominent
characteristics and to build a matter-element model. Extension
theory from pattern recognition was used for the detection. Exten-
sive computer simulations using the Matlab tool were performed
for various signal detection problems due to electric power system
disturbance.

The following are concluding remarks:

1) In this study, the averaged accuracy in the case of no noise is
96% and in the case of 5% noise is 95%, demonstrating that
the proposed detection method is very effective for detect-
ing power quality.

2) The proposed detection method has higher accuracy than all
traditional methods developed in previous studies. Some
main defects in traditional methods have been resolved.
General power quality analyzers cannot identify power har-
monics and electric power signals with noise interference.
However, when the proposed chaos synchronization-based
detection is adopted, the extracted characteristics are very
prominent; therefore, it is more likely to be able to detect
power harmonics and power disturbance in the case with
noise disturbance.

3) This new method is very simple and has high accuracy. The
new method does not require extracting the power system
characteristics, such as voltage, current, and power. It is
desirable to extract the dynamic error trajectories after
chaos synchronization, so as to obtain distinguished charac-
teristics for further identification using the extension theory
for pattern recognition.

4) Since the proposed method has a very simple structure, its
computation is very fast, with high accuracy and good
expandability. If furthermore the developed scheme can be
implemented in embedded system chips in the near future,
it will be very useful for miniaturization of hand-held power
quality analyzers and detection devices.
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